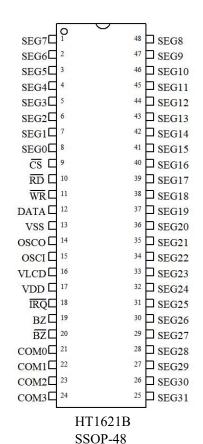
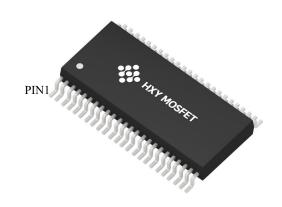
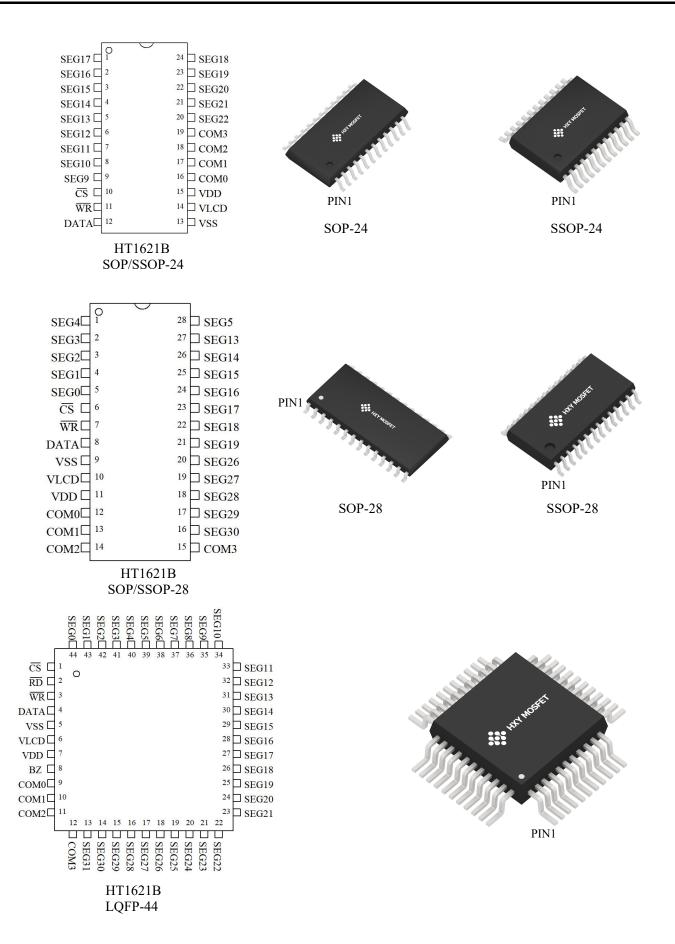


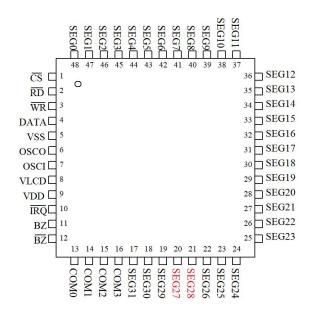
概述

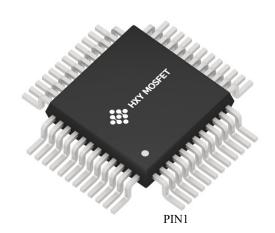

HT1621B 是用来对 MCU 的 I/O 口进行扩展的外围设备。显示矩阵为 32×4,是一个 128 点阵式存储器映射多功能 LCD 驱动电路。HT1621B 的软件特性使它很适合应用于 LCD 显示,包括 LCD 模块和显示子系统。在主控制器和 HT1621B 之间的接口应用只需要 3 或 4 个端口。Power down 命令可以减少电源损耗。

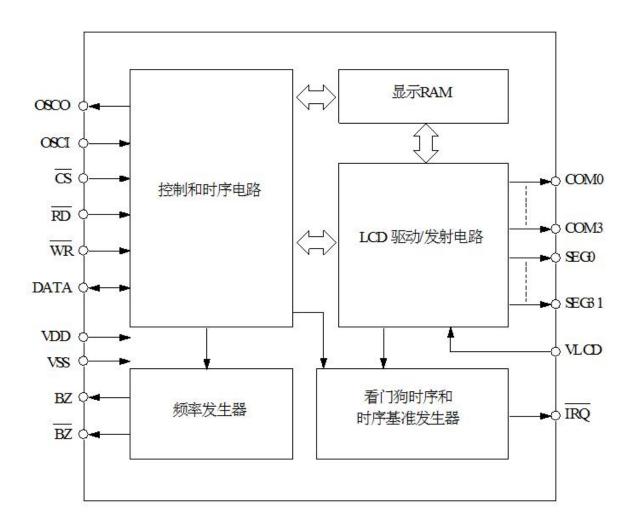

功能特点

- 工作电压: 2.4V~5.2V
- 256kHz 内建 RC 振荡电路
- 外接 32.768kHz 晶振或 256kHz 时钟输入
- 1/2 或 1/3 的偏置, 1/2、1/3 或 1/4 的占空比
- 内部 Time base 频率源
- 两种蜂鸣器频率可供选择(2kHz/4kHz)
- Power down 命令减少电源损耗
- 内部 Time base 和 WDT 看门狗电路
- Time base /WDT 的溢出输出
- 有 8 种 Time base /WDT 时钟源


- 32×4 的 LCD 驱动
- 32×4 位的显示 RAM
- 3端串行接口
- 内部 LCD 驱动频率
- 软件设置
- 数据模式和命令模式指令
- R/W 地址自动累加
- 三种数据访问模式
- 用 VLCD 端子来调节 LCD 电压, VLCD 电压 必须小于或等于 VDD 电压


管脚排列图




HT1621B LQFP-48

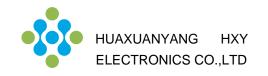
注: LQFP-48封装, SEG27、SEG28 非正常排序

管脚说明

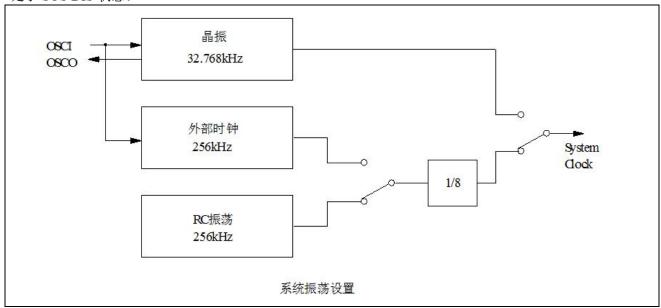
序号	名称	I/O	功能描述
9	CS	I	片选信号输入端(带上拉电阻)。当 CS 为逻辑高电平数据和命令不能读出或写入,串行接口电路复位。但是如果 CS 为逻辑低电平,控制器与 HT1621B 之间可以传输数据和命令。
10	RD	I	READ 时钟输入端(带上拉电阻)。RAM 中的数据在 RD 信号的下降沿被输出到 DATA 线上,主控制器可以在下一个上升沿锁存这个数据。
11	WR	I	WRITE 时钟输入端(带上拉电阻)。在 WR 信号的上升沿, DATA 线上的数据被锁存到 HT1621B。
12	DATA	I/O	串行数据输入/输出端(带上拉电阻)。
13	VSS	_	接地端。
15	OSCI	I	OSCI和OSCO端连接到一个32.768kHz的晶振用于产生系统
14	OSCO	О	时钟。如果使用外接时钟,则连接到 OSCI 端。但如果选用片内的 RC 振荡电路,则 OSCI 和 OSCO 端悬空。
16	VLCD	I	LCD 电压输入端
17	VDD	_	电源电压
18	ĪRQ	О	Time base 或 WDT 溢出标志,N 管开漏输出
19, 20	$\overline{\mathrm{BZ}},\mathrm{BZ}$	0	2kHz 或 4kHz 的蜂鸣频率输出
21~24	COM0~COM3	0	LCD 公共端输出
1~8 25~48	SEG7~SEG0 SEG31~SEG8	О	LCD 段输出

功能框图

功能说明


显示存储-RAM 结构

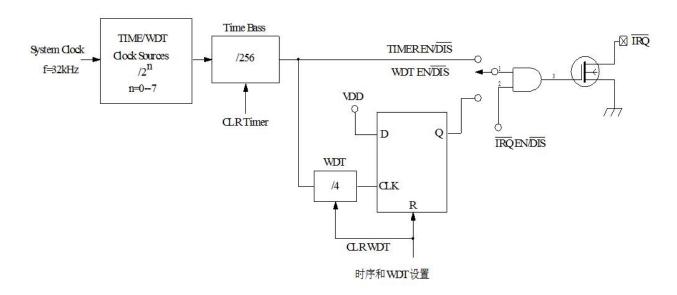
静态显示存储器(RAM)结构为 32×4 位,贮存所显示的数据。RAM 的内容直接映射成 LCD 驱动器的内容。通过读,写和读-修改-写的命令把数据存储到 RAM 中。RAM 中的内容映射至 LCD 的过程如下表所示:


	COM3	COM2	COMT	COMO		
SEG0					0	
SEG1					1	
SEG2					2	₩ ₩ . <i>C A</i>
SEG3					3	地址 6 位 (A5,A4A0)
						(A5, A4A0)
SEG31					31	
	D3	D2	D1	D0	Data\Addr	

系统振荡器

HT1621B 的时钟是用于产生 Time base/WDT 的时钟频率、LCD 驱动时钟和蜂鸣频率。该时钟来源于片内256kHz 的 RC 振荡器,32.768kHz 的外接晶振或由 S/W 设置的外部 256kHz 时钟。系统振荡的设置如下图所示。当执行完 SYS DIS 命令后,系统时钟停止并且 LCD 偏置发生器也将停止工作。此命令只适用于片内 RC 振荡或是外接晶振的时候。一旦系统时钟停止,则 LCD 显示变暗,时序基准/WDT 也将失去功能。

LCD OFF 这条命令是用来关闭 LCD 偏置发生器的。LCD OFF 命令使 LCD 偏置发生器关闭后,执行 SYS DIS 命令减少电源损耗,相当于 Power down 命令一样。但如果外接系统时钟的话, SYS DIS 命令既不能关闭振荡也不能进入 Power down 模式。晶振可以在 OSI 端口外接一个 32kHz 的频率。在这种情况下,系统将无法进入 Power down 模式,这就类似于外接一个 256kHz 的时钟。在系统上电工作时,HT1621B 就处于 SYS DIS 状态。


Time base 和 WDT 时序

Time base 发生器是由一个产生准确时序的 8 级递增计数器组成的。WDT 则是由一个 8 级 Time base 发生器和一个 2 级递增计数器组成,可以使主控制器或子系统在非正常情况下(未知的或不希望发生的跳转、执行错误等)停止工作。WDT 暂停,将设置一个 WDT 暂停标志。Time base 发生器的输出和 WDT 暂停标志的输出可以用命令输出到 \overline{IRQ} 端。共有 8 种频率可以作为 Time base 发生器和 WDT 时钟的来源。频率是根据以下公式计算出来的: $f_{WDT}=\frac{32kHz}{2^n}$,n 的范围为 $0\sim7$ 。公式中的 32kHz 表示系统的频率,

可以是 32.768kHz 的晶振, 片内振荡 (256kHz) 或是外接振荡 (256kHz)。

如果选择一个片内 256kHz RC 振荡或是外接 256kHz 时钟作为系统时钟的话,系统时钟被一个 3 级分频器预置成 32kHz。这样 Time base 发生器和 WDT 就都与命令有关系,当 Time base 发生器和 WDT 使用同一个 8 级计数器的时候需小心使用与 Time base 发生器和 WDT 相关的命令。例如调用 WDT DIS 命令对时基发生器无效,而 WDT EN 不但适用于 Time base 发生器而且可以激活 WDT 暂停标志输出(WDT 暂停标志连接到 \overline{IRQ} 端口)。执行 TIMER EN 命令后,WDT 就不与 \overline{IRQ} 端口相连,而时钟输出连接到 \overline{IRQ} 端口。执行 CLR WDT 命令可以把 WDT 清零,Time base 发生器的内容就由 CLR WDT 或是 CLR TIMER 命令清零。CLR WDT 或 CLR TIMER 命令分别相应的在 WDT EN 或 TIMER EN 命令之前执行。在执行 \overline{IRQ} EN 命令之前应先执行 CLR WDT 或 CLR TIMER 命令。在 WDT 模式转换成为 Time base 模式之前必须执行 CLR TIMER 命令。一旦出现 WDT 暂停模式, \overline{IRQ} 端将保持逻辑低电平直到执行 CLR WDT 或是 \overline{IRQ} DIS 命令。 \overline{IRQ} 输出无效后, \overline{IRQ} 脚将处于悬浮状态。通过执行 \overline{IRQ} EN 或 \overline{IRQ} 如 DIS 命令使 \overline{IRQ} 输出处于有效或无效状态。 \overline{IRQ} 医N 命令可以使 Time base 或 WDT 的暂停标志位输出到 \overline{IRQ} 端口。时钟和 WDT 的设置如下所示。在片内 RC 振荡或晶振的情况下,Power down 模式将减少电源损耗直到通过相应的系统命令来打开或关闭振荡。在 Power down 模式下,Time base/WDT 不起作用。

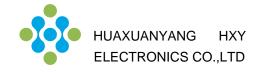
另一方面,如果选择外接时钟作为系统时钟则 SYS DIS 命令无效,Power down 模式也不会被执行。在选择外接时钟之后,HT1621B 将继续工作直到系统断电或是外接时钟被移走。在系统上电后, \overline{IRQ} 被禁止。

蜂鸣器输出

在 HT1621B 内部有一个简单的蜂鸣器电路。蜂鸣振荡器可提供一对蜂鸣驱动信号 BZ 和 BZ 产生一个蜂鸣信号。执行 TONE4k 和 TONE2k 命令可以选择两种蜂鸣输出。TONE 4k 和 TONE 2k 命令设置蜂鸣频率分别为 4k 和 2k。蜂鸣输出可以通过 TONE ON 或 TONE OFF 命令来打开或关闭。蜂鸣输出端 BZ 和 BZ 是一对反相驱动输出,用来驱动压电蜂鸣器。

名称	命令代码	功能		
蜂鸣关闭	0000-1000-X	关闭蜂鸣输出		
4k 蜂鸣	010X-XXXX-X	打开蜂鸣输出,蜂鸣频率为 4kHz		
2k 蜂鸣	011X-XXXX-X	打开蜂鸣输出,蜂鸣频率为 2kHz		

LCD 驱动


HT1621B 是一个 128(32×4)点阵式 LCD 驱动器。通过 S/W 的设置可以驱动 1/2 或 1/3 的偏置,2、3 或 4个 COM 端的 LCD 显示器,这个特性使得 HT1621B 适合于多种 LCD 显示器。LCD 驱动时钟产生于系统时钟,不管系统时钟是来源于 32.768kHz 晶振频率还是片内 RC 振荡器频率或外部频率,LCD 驱动时钟的频率总是 256Hz。LCD 相应的命令如下表所示。

名称	命令代码	功能
LCD OFF	100 00000010X	关闭 LCD 输出
LCD ON	100 00000011X	打开 LCD 输出
DIAGR COM	1000010 LV V	c=0: 1/2 偏置 c=1: 1/3 偏置
BIAS&COM	100 0010abXcX	ab=00: 2 COMS ab=01: 3 COMS ab=10: 4 COMS

黑体形式的 **100** 表明是命令模式 ID,如果发送连续命令,命令模式 ID(除第一个命令)将被忽略。LCD OFF 命令通过中断 LCD 偏置发生器来关闭 LCD 显示,而 LCD ON 命令通过启动 LCD 偏置发生器来开启 LCD 显示。BIAS 和 COM 命令是与 LCD 显示器相关的命令,通过该命令 HT1621B 可驱动许多类型的 LCD 显示器。

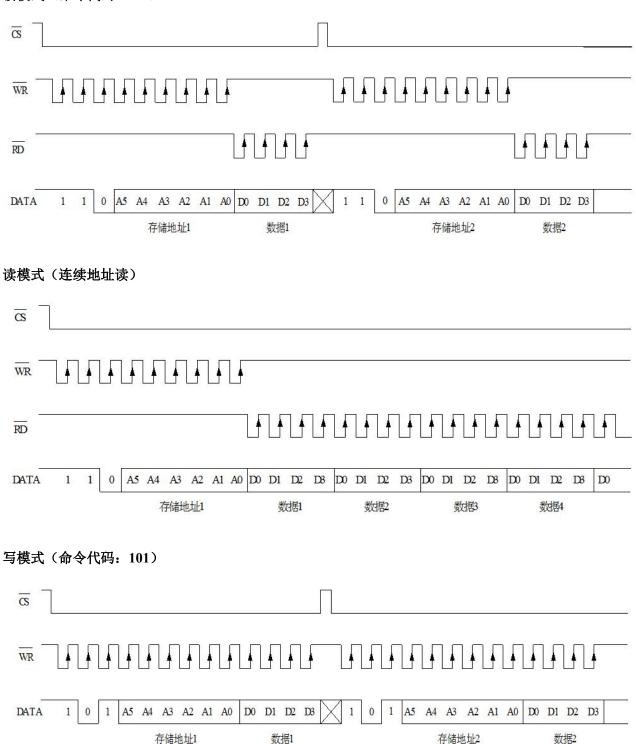
命令格式

HT1621B 可以通过 S/W 来设置,设置 HT1621B 和传送 LCD 显示数据的指令共有两种模式,分别为命令模式和数据模式。对 HT1621B 的设置称作命令模式,其 ID 是 100,由系统设置命令、系统频率选择命令、 LCD结构命令、蜂鸣频率选择命令和操作命令组成。数据模式包括读、写和读写变换操作。

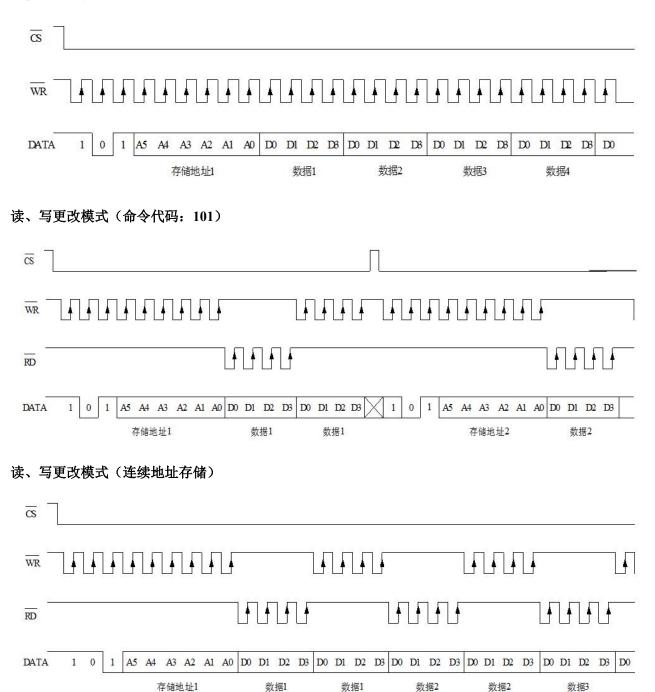
下表是数据模式 ID 和命令模式 ID:

条件	模式	ID
读取	数据	110
写入	数据	101
读、写之间的变换	数据	101
命令	命令	100

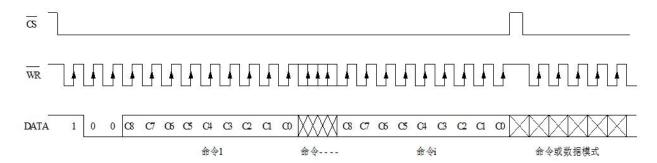
模式命令出现在数据和命令传送之前。如出现连续指令,命令模式 ID 100 可以被忽略。当系统工作在不连续命令或不连续地址数据模式, \overline{CS} 端应设置为 1,而之前的工作模式将被复位。一旦 \overline{CS} 端为 0,将出现一个新的工作模式 ID。

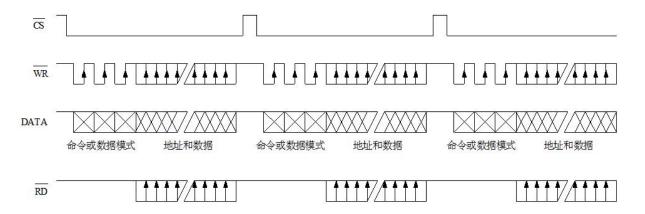

接口

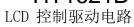
HT1621B 共有 4 线需要接口。 $\overline{\text{CS}}$ 初始化串行接口电路和在主控制器和HT1621B 之间终接通信端。 $\overline{\text{CS}}$ 为1时,主控制器和 HT1621B 之间数据和命令被禁止和初始化。出现命令模式和模式转换之前,需要一个高电平脉冲初始化 HT1621B 的串行接口。数据线是串行输入/输出线。读写数据或写入命令必须通过数据线。 $\overline{\text{RD}}$ 线是READ 时钟输入。RAM 中的数据在 $\overline{\text{RD}}$ 信号的下降沿被读出,读出数据将显示在DATA 线上。主控制器在READ 信号上升沿和下一个下降沿之间读出正确数据。 $\overline{\text{WR}}$ 线是WRITE 时钟输入。数据线上的数据、地址、命令在 $\overline{\text{WR}}$ 信号上升沿全被读到HT1621B。 $\overline{\text{IRQ}}$ 线被用作主控制器和HT1621B 之间的接口。 $\overline{\text{IRQ}}$ 脚执行时间基准或WDT功能。



时序图




写模式(连续地址写)



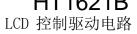
命令模式(命令代码: 100)

模式 (数据和命令模式)

命令表格

名称	ID	命令代码	D/C	功能	复位
READ	110	A5A4A3A2A1A0D0D1D2D3	D	从 RAM 中读取数据	
WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	把数据写入到 RAM 中	
READ-MODIFY-WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	从 RAM 中读取和写入数据	
SYS DIS	100	0000-0000-X	С	关闭系统时钟和 LCD 偏置发生器	YES
SYS EN	100	0000-0001-X	С	打开系统时钟	
LCD OFF	100	0000-0010-X	C	关闭 LCD 偏置发生器	YES
LCD ON	100	0000-0011-X	С	打开 LCD 偏置发生器	
TIMERS DIS	100	0000-0100-X	C	禁止 Time base 输出	
WDT DIS	100	0000-0101-X	C	禁止 WDT 暂停标志输出	
TIMER EN	100	0000-0110-X	C	允许 Time base 输出	
WDT EN	100	0000-0111-X	C	允许 WDT 暂停标志输出	
TONE OFF	100	0000-1000-X	С	关闭蜂鸣输出	YES
TONE ON	100	0000-1001-X	С	打开蜂鸣输出	
CLR TIMER	100	0000-11XX-X	С	清空 Time base 发生器中的内容	
CLR WDT	100	0000-111X-X	С	清空 WDT 中的内容	
XTAL 32k	100	0001-01XX-X	С	系统时钟,晶振	
RC 256k	100	0001-10XX-X	С	系统时钟,片内 RC 振荡	YES
EXT 256k	100	0001-11XX-X	С	外接时钟	
				LCD 1/2 偏置设置	
BIAS 1/2	100	0010-abX0-X	C	ab=00: 2 COMS	
DIAS 1/2	100			ab=01: 3 COMS	
				ab=10: 4 COMS	
				LCD 1/3 偏置设置	
BIAS 1/3	100	0010-abX1-X	С	ab=00: 2 COMS	
DIAS 1/3	100	0010-abX1-X		ab=01: 3 COMS	
				ab=10: 4 COMS	
TONE 4k	100	010X-XXXX-X	С	蜂鸣频率输出: 4kHz	
TONE 2k	100	011X-XXXX-X	С	蜂鸣频率输出: 2kHz	
ĪRQ dis	100	100X-0XXX-X	С	禁止 IRQ 输出	YES
ĪRQ EN	100	100X-1XXX-X	С	允许 IRQ 输出	
F1	100	10137 37000 37		Time base/WDT 时钟输出: 1Hz	
F1	100	101X-X000-X	С	WDT 暂停标志: 4s	
F2	100	10137 37001 37		Time base/WDT 时钟输出: 2Hz	
F2	100	101X-X001-X	С	WDT 暂停标志: 2s	
E4	100	10137 37010 37		Time base/WDT 时钟输出: 4Hz	
F4	100	101X-X010-X	С	WDT 暂停标志: 1s	
E0	100	10177 77011 77	-	时基/WDT 时钟输出:8Hz	
F8	100	101X-X011-X	C	WDT 暂停标志: 1/2s	
74.6	400	10177 77100 77	_	Time base/WDT 时钟输出: 16Hz	
F16	100	101X-X100-X	С	WDT 暂停标志: 1/4s	
	1.00			Time base/WDT 时钟输出: 32Hz	
F32	100	101X-X101-X	C	WDT 暂停标志: 1/8s	
				Time base/WDT 时钟输出: 64Hz	
F64	100	101X-X110-X	С	WDT 暂停标志: 1/16s	
				Time base/WDT 时钟输出: 128Hz	
F128	100	101X-X111-X	С	WDT 暂停标志: 1/32s	YES
TEST	100	1110-0000-X	С	测试模式	
NORMAL	100	1110-0000 X	C	普通模式	YES

注释: A5~A0: RAM 地址 D3~D0: RAM 数据 D/C: 数据/命令模式

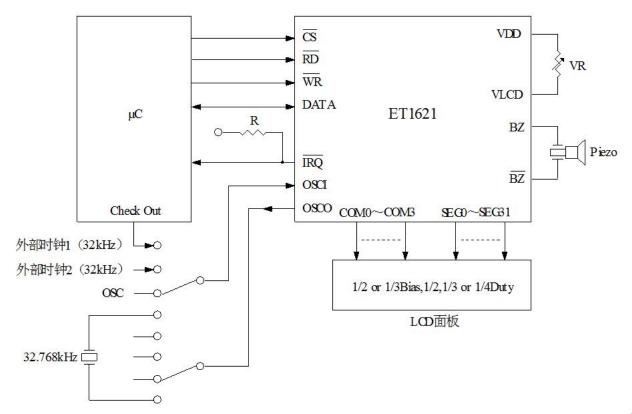

极限参数

特性	符号	极限值	单 位
电源电压	V_{DD}	-0.3~5.5	V
输入电压	V_{IN}	V_{SS} -0.3 \sim V_{DD} +0.3	V
存贮温度	T _{STG}	−50~+125	°C
工作温度	T _{OTG}	−25~+75	°C

电参数

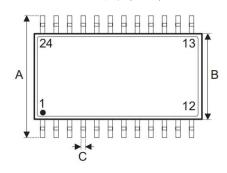
直流参数

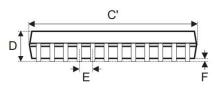
名称	が、	基小佐	曲刑店	型值 最大值	* *	测试条件		
冶 柳	符号	最小值	一央 望徂		单位	VDD	条件	
工作电压	V_{DD}	2.4	_	5.2	V	_	_	
工作由法	т	_	150	300		3V	无负载/LCD 打开	
工作电流	I_{DD1}	_	300	600	μA	5V	片内 RC 振荡	
工灰山冰	т		60	120		3V	无负载/LCD 打开	
工作电流	I_{DD2}	_	120	240	μA	5V	晶振	
工灰山冰	т		100	200		3V	无负载/LCD 关闭	
工作电流	I_{DD3}	_	200	400	μA	5V	外接时钟	
生 tn 由 次	т		0.1	5		3V	无负载	
人	I_{STB}	_	0.3	10	μA	5V	电源关机模式	
输入低电压	17	0		0.6	V	3V	DATA, \overline{WR} , \overline{CS} , \overline{RD}	
- 柳八似电压	V_{IL}	0		1.0	V	5V		
输入高电压	V_{IH}	2.4	_	3.0	V	3V	$\left \begin{array}{c} DATA, \ \overline{WR}, \ \overline{CS}, \ \overline{RD} \end{array}\right $	
		4.0		5.0		5V	· · · · ·	
DATA, BZ, \overline{BZ} , \overline{IRQ}	I_{OL1}	0.5	1.2		mA	3V	$V_{OL}=0.3V$	
DATA, BZ, BZ, IRQ	IOLI	1.3	2.6		1117 \$	5V	$V_{OL}=0.5V$	
DATA, BZ, \overline{BZ}	I _{OH1}	-0.4	-0.8		mA	3V	V _{OH} =2.7V	
DATA, BZ, BZ	IOHI	-0.9	-1.8		шл	5V	V _{OH} =4.5V	
LCD 公共端灌电流	I_{OL2}	80	150		μA	3V	$V_{OL}=0.3V$	
LCD公共编程电机	IOL2	150	250		μΑ	5V	V_{OL} =0.5 V	
LCD 公共端拉电流	I _{OH2}	-80	-120		μΑ	3V	V _{OH} =2.7V	
LCD 公六圳江电机	IOH2	-120	-200		μА	5V	V _{OH} =4.5V	
 LCD SEG 端灌电流	I_{OL3}	60	120			3V	$V_{OL}=0.3V$	
LCD SEG 圳准电弧	IOL3	120	200		μΑ	5V	$V_{OL}=0.5V$	
LCD SEG 端拉电流	I_{OH3}	-40	-70		μA	3V	$V_{OH}=2.7V$	
TCD DEG 划11年41加	10H3	-70	-100		μΛ	5V	V _{OH} =4.5V	
 上拉电阻	R_{PH}	40	80	150	kΩ	3V	$\left \begin{array}{c} DATA, \ \overline{WR}, \ \overline{CS}, \ \overline{RD} \end{array}\right $	
17 17 42 MT	K _{PH}	30	60	100	N22	5V	DAIA, WK, CS, KD	



交流参数

名称	符号	最小值	典型值 最大		最大単位		测试条件	
冶 柳	41.2	取小阻 	典望祖 	值	<u>半</u> 仏 	VDD	条件	
系统时钟	r	_	256		kHz	3V	片内 RC 振荡	
分纸的 钾	f_{SYS1}	_	256		KHZ	5V		
系统时钟	f_{SYS2}		32.768	_	kHz	3V	晶振	
2K2/m1.4L	1SYS2		32.768		KIIZ	5V	HH 1/IX	
系统时钟	f_{SYS3}		256		kHz	3V	 外接时钟	
74176 411	-5155		256			5V		
17.4	_		f _{SYS1} /1024				片内 RC 振荡	
LCD 频率	f_{LCD1}		f _{SYS2} /128		Hz	_	晶振	
		_	f _{SYS3} /1024				外接时钟	
LCD 公共端周期	t_{COM}		n/ f _{LCD}		sec	-	N: 公共端个数	
串行数据时钟(WR端)	F _{CLK1}		_	150	kHz	3V	占空比周期 50%	
1 17 200 11 17 11 11 11 11 11 11			_	300		5V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
串行数据时钟(RD 端)	F_{CLK2}		<u> </u>	75 150	kHz	3V 5V	占空比周期 50%	
	t _{CS}	<u> </u>	250		ns		CS	
114000000000000000000000000000000000000	-65	3.34					写模式	
		6.67			μs	3V	读模式	
WR , RD 输入脉宽	t_{CLK}	1.67					写模式	
		3.34			μs	5V	读模式	
		3.31				3V	V X X	
时宽	t_r , t_f	_	120	_	ns	5V	_	
数据到 WR , RD 时宽			120			3V		
的设置时间	$t_{ m su}$	_	120	_	ns	5V	_	
数据到 WR , RD 时宽			120			3V		
的保持时间	$t_{ m h}$		120		ns	5V		
CS 到 WR , RD 时宽的			100			3V		
设置时间	t_{su1}	_	100		— ns	5V		
CS 到 WR , RD 时宽的	4		100		**************************************	3V		
保持时间	t_{h1}		100		ns	5V	_	

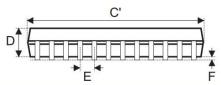

参考应用线路图



*: 此电路仅供参考。 VLCD 供电必须小于或等于 VDD 电压

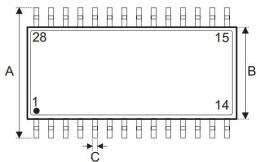
封装信息

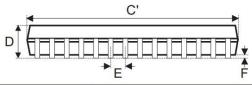
SOP-24 (300mil) 封装尺寸


符号	尺寸(单位: inch)					
19.5	最小	正常	最大			
A	_	0.406 BSC	_			
В	_	0.295 BSC	_			
С	0.012		0.020			
C'	<u> </u>	0.606 BSC	_			
D	_	1-1	0.104			
Е	_	0.050 BSC	_			
F	0.004	_	0.012			
G	0.016	i—	0.050			
Н	0.008	K	0.013			
α	0°		8°			

符号	尺寸(单位: mm)					
17.5	最小	正常	最大			
A	<u></u>	10.30 BSC	_			
В	_	7.5 BSC	_			
C	0.31	ş— ş	0.51			
C'	_	15.4 BSC	_			
D	_	1—1	2.65			
Е	_	1.27 BSC	-			
F	0.10	()	0.30			
G	0.40	_	1.27			
Н	0.20		0.33			
α	0°	_	8°			

SSOP-24 (150mil) 封装尺寸

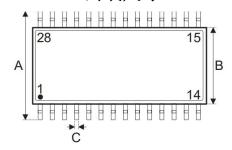




符号	尺寸(单位: inch)					
1寸写	最小	正常	最大			
A	_	0.236 BSC	s			
В	_	0.154 BSC	—			
С	0.008	_	0.012			
C'	:—-	0.341 BSC				
D	_	_	0.069			
Е	(<u> </u>	0.025 BSC	(<u> </u>			
F	0.004	_	0.010			
G	0.016	_	0.050			
Н	0.004	_	0.010			
α	0°	_	8°			

符号	尺寸(单位: mm)		
10.2	最小	正常	最大
A	_	6.0 BSC	_
В	_	3.9 BSC	_
С	0.20	—	0.30
C'	_	8.66 BSC	-
D	_	_	1.75
Е	_	0.635 BSC	
F	0.10	_	0.25
G	0.41	_	1.27
Н	0.10	_	0.25
α	0°	_	8°

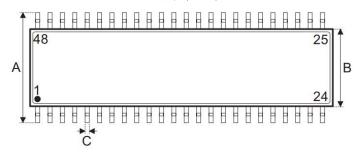
SOP-28 (300mil) 封装尺寸

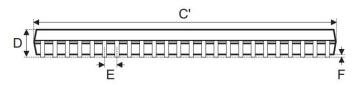


符号	尺寸(单位: inch)		
17.5	最小	正常	最大
A	_	0.406 BSC	_
В	_	0.295 BSC	_
C	0.012	—	0.020
C'	_	0.705 BSC	_
D	_	_	0.104
Е	<u>-</u>	0.050 BSC	_
F	0.004	_	0.012
G	0.016	1—2	0.050
Н	0.008	_	0.013
α	0°	1-0	8°

符号		尺寸 (单位: mm)	
17.5	最小	正常	最大
A	_	10.30 BSC	_
В	_	7.5 BSC	_
C	0.31	_	0.51
C'	_	17.9 BSC	_
D	_	_	2.65
Е	_	1.27 BSC	_
F	0.10	_	0.30
G	0.40	V ——V	1.27
Н	0.20	<u> </u>	0.33
α	0°	()	8°

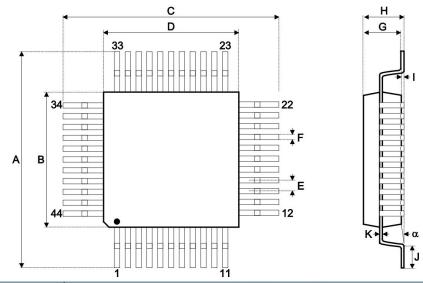
SSOP-28 (150mil) 封装尺寸




符号		尺寸 (单位: inch)	
10.5	最小	正常	最大
A	_	0.236 BSC	_
В	_	0.154 BSC	_
C	0.008	_	0.012
C'	_	0.390 BSC	_
D	_	<u> </u>	0.069
Е	_	0.025 BSC	_
F	0.004	<u> </u>	0.0098
G	0.016	_	0.050
Н	0.004		0.010
α	0°	_	8°

符号	尺寸 (单位: mm)		
1寸 与	最小	正常	最大
A	_	6.0 BSC	_
В	_	3.9 BSC	_
С	0.20	_	0.30
C'	-	9.9 BSC	_
D	_	2	1.75
E	_	0.635 BSC	_
F	0.10		0.25
G	0.41	_	1.27
Н	0.10	i—	0.25
α	0°	_	8°

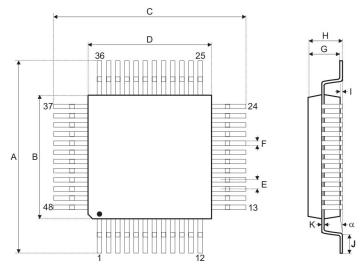
SSOP-48 (300mil) 封装尺寸



符号	尺寸 (单位: inch)		
17 7	最小值	典型值	最大值
A	0.395	_	0. 420
В	0. 291	0. 295	0. 299
С	0.008	s—	0.014
C'	0.620	0.625	0.630
D	0.095	0. 102	0. 110
Е		0.025	19
F	0.008	0.012	0.016
G	0.020	_	0.040
Н	0.005	_	0.010
a	0°	<u> </u>	8°

符号	尺寸(单位: mm)		
14 7	最小值	典型值	最大值
A	10. 3	 2	10. 67
В	7. 39	7. 49	7. 59
С	0. 20	-	0.34
C'	15. 75	15. 88	16. 00
D	2. 41	2. 59	2.79
Е	_	0. 635	(7)
F	0. 20	0.3	0.41
G	0. 51		1.02
Н	0. 13	_	0.25
а	0°		8°

LQFP-44(10mm*10mm)封装尺寸



符号	尺寸(单位: inch)		
1寸 与	最小值	典型值	最大值
A	<u></u>	0. 472	0
В	_	0.394	_
С	2	0.472	00
D	-	0.394	P—
Е		0.032	s -
F	0.012	0.015	0.018
G	0.053	0.055	0.057
Н		<u></u> 1	0.063
I	0.002	_	0.006
J	0.018	0.024	0.030
K	0.004	_	0.008
а	0°	o—a	7°

符号		尺寸(单位: mm)	
1寸 与	最小值	典型值	最大值
A	23	12.00	(<u></u>
В		10.00	
С		12.00	1 <u></u> -
D	_	10.00	·
Е		0.80	8
F	0.30	0.37	0.45
G	1. 35	1. 4	1. 45
Н	_	_	1.60
I	0. 05	_	0. 15
J	0. 45	0.60	0.75
K	0.09	_	0. 20
а	0°	9 <u></u> 15	7°

LQFP-48 (7mm*7mm) 封装尺寸

符号	尺寸 (单位: inch)		
14. 2	最小值	典型值	最大值
A	<u></u> 7	0.354	
В	_	0. 276	
С		0. 354	(<u>3</u>)
D	_	0. 276	
Е		0.020	(<u>1</u>)
F	0.007	0.009	0.011
G	0.053	0.055	0.057
Н	—	_	0.063
I	0.002	- 1.4	0.006
J	0.018	0.024	0.030
K	0.004		0.008
а	0°	<u></u> 1	7°

符号		尺寸 (单位: mm)	
171 75	最小值	典型值	最大值
A	- 2	9.00	s
В	_	7. 00	_
C	_	9.00	_
D	-	7. 00	_
Е	_	0. 50	_
F	0. 17	0. 22	0. 27
G	1.35	1. 4	1. 45
Н	<u>-</u>	<u>-</u>	1. 60
I	0.05	_	0. 15
J	0. 45	0.60	0.75
K	0.09		0. 20
а	0°	-	7°

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.