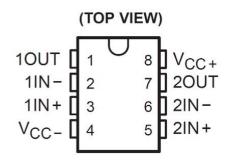


Descriptions

Consisted of high voltage J-FET and bipolar transistors, the TL062IDR is a high speed J-FET dual- channel operational amplifier, featured with high slew rate,low input offset and bias current and low offset voltage temperature rate. The TL062IDR provides SOP-8(SOIC-8) package forms.

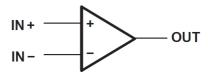
Feature

- Lower Power Consumption
- Wide Common-Mode And Differential Voltage Ranges
- Low Input Bias And Offset Currents
- Output Short-Circuit Protection
- High Input Impedance
- High Slew Rate
- High Gain-Bandwidth up to 4MHz

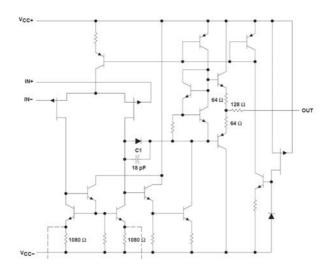

Applications

- Battery test equipment
- Pro audio mixers
- Single phase online UPS
- Solar energy: string and central inverter
- Three phase UPS
- Motor drives: AC and servo drive control and power stage modules

Ordering Information


Product Model	Package Type	Packing	Packing Qty	ĺ
TL062IDR	SOP-8(SOIC-8)	Tape	4000Pcs/Reel	1

Pins Diagram

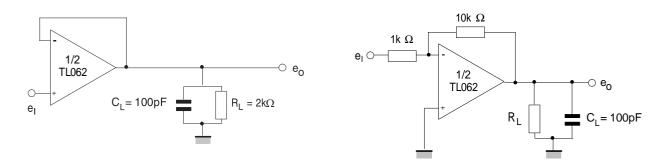


Symbol

Internal Diagram

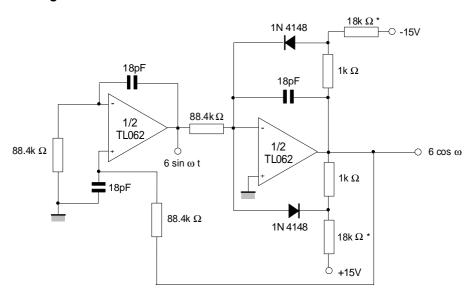
Absolute Maximum Ratings

Symbol	Description	Parameter	Unit
V _{CC}	Supply Voltage	±18	V
Vi	Input Voltage	±14	V
V _{id}	Differential Input Voltage	±28	V
T _{oper}	Operating Temperature Range	0~70	$^{\circ}$ C
T _{stg}	Storage Temperature Range	-65~+150	$^{\circ}$ C


Electrical Parameter Characteristics

(Vcc=±15, Tamp=25°C Unless otherwise specified)

Comment of	Parameter Name	Test Conditions	Parameter			l lmit
Symbol			Min.	Тур.	Max.	Unit
V _{iO}	Input Offset Voltage	Vo=0V		3	15	mV
I _{iO}	Input Offset Current	Vo=0V			1.5	pА
I _{ib}	Input Bias Current	Vo=0V			2.5	nA
V _{icr}	Input Common Mode Voltage Range		-12	±11	15	V
Vом	Maximum Peak Output Voltage Swing	R _L = 10 kΩ R _L ≥ 2 kΩ	±12 ±10	±13.5 ±12.5		V
A _{VD}	Large-signal differential voltage amplification	$R_L \ge 2 \text{ k}\Omega$, Vo = ±10 V	80	95		dB
GB	Gain Bandwidth			3		MHz
CMRR	Common Mode Rejection Ratio		70	85		dB
kSVR	Supply Voltage Rejection Ratio	V_{CC} = ±15 V to ±9 V, Vo=0V	70	86		dB
Icc	Static Supply Current (eachmplifier)			1.4	2.8	mA
SR	Slew Rate	V _I = 10 V	8	13		V/us
t _R	Rise time			0.05		us


Typical Application (Including One Amplifier)

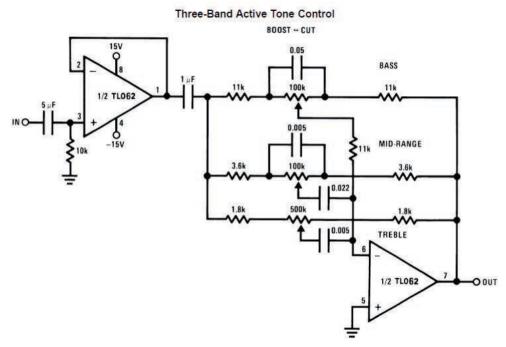
Typical lines

Voltage follower

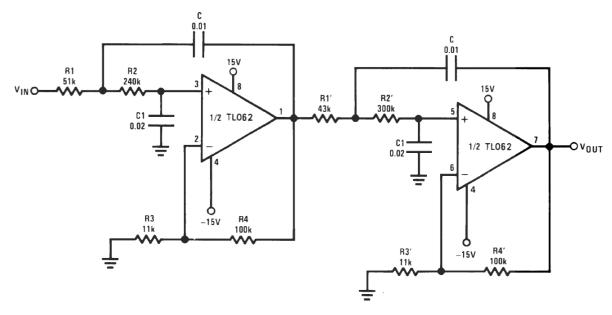
Gain-of-10 inverting amplifier

^{*} These resistor values may be adjusted for a symmetrical output

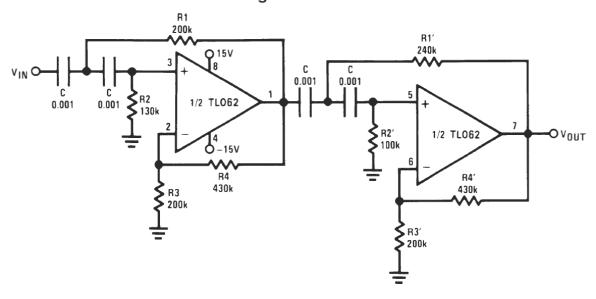
100kHz quadruple oscillator



$$V_{O} = \frac{1V}{R_{LADDER}} \times R_{X}$$


Where R_{LADDER} is the resistance from switch S1 pole to pin 7 of the TL062CN

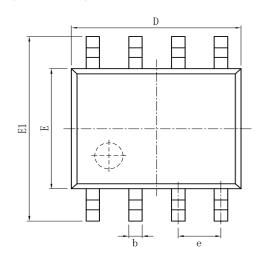
Resistance-to-Voltage Conversion

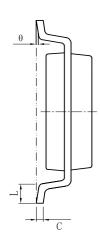

Three-Band Active Tone Control

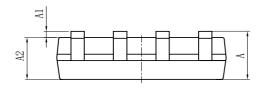
Fourth Order Low Pass Butterworth Filter

Fourth-order Low Pass Butterworth Filter

Fourth Order High Pass Butterworth Filter




- Corner frequency (f_C) = $\sqrt{\frac{1}{R1R2C^2}}$ $\frac{1}{2\pi}$ = $\sqrt{\frac{1}{R1'R2'C^2}}$ $\frac{1}{2\pi}$
- \bullet Passband gain (H_O) = (1 + R4/R3) (1 + R4'/R3')
- First stage Q = 1.31
- Second stage Q = 0.541
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10


Fourth Order High Pass Butterworth Filter

Package Information SOP-8(SOIC-8)

Size	Size Dimensions In Millimete		Size	Dimensions In Inches		
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)	
Α	1.350	1.750	Α	0.053	0.069	
A1	0.100	0.250	A1	0.004	0.010	
A2	1.350	1.550	A2	0.053	0.061	
b	0.330	0.510	b	0.013	0.020	
С	0.170	0.250	С	0.006	0.010	
D	4.700	5.100	D	0.185	0.200	
E	3.800	4.000	E	0.150	0.157	
E1	5.800	6.200	E1	0.228	0.224	
е	1.270(BSC)		е	0.050(BSC)		
L	0.400	1.270	L	0.016	0.050	
θ	0°	8°	θ	0°	8°	

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.