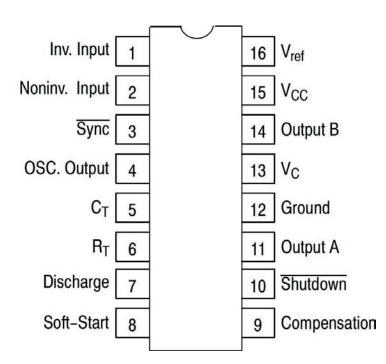


特性

- •工作电压范围 8-35V;
- •5.1 基准电压,精度±1%
- •振荡频率范围 100Hz-500KHz
- •振荡器同步信号输入端
- 死区时间可调
- 内置软启动电路
- •逐步脉冲关断
- •带滞回电压的输入欠压锁定
- PWM 锁定功能,禁止多脉冲

DIP-16 SOP-16 (SOIC-16)

SG3525AP013TR

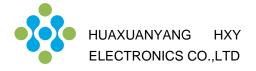

振荡器

性能描述

芯片+5.1 基准电压精度为±1%,由于基准电压值在误差放大器的输入共模范围内,因此无需外接电阻。SG3525AP013TR 可以工作在主从模式、也可以与外部时钟同步。通过 Cr 与放电端之间的电阻可以调节死区时间。芯片内部的其它功能电路还包括:软启动电路、关断电路、欠压电路。


SG3525AP013TR 控制芯片的输出级为大功率图腾柱式输出,其源电流和吸电流超过 200mA,其 给出逻辑电平为"或非"逻辑,"断"状态时为低电平。

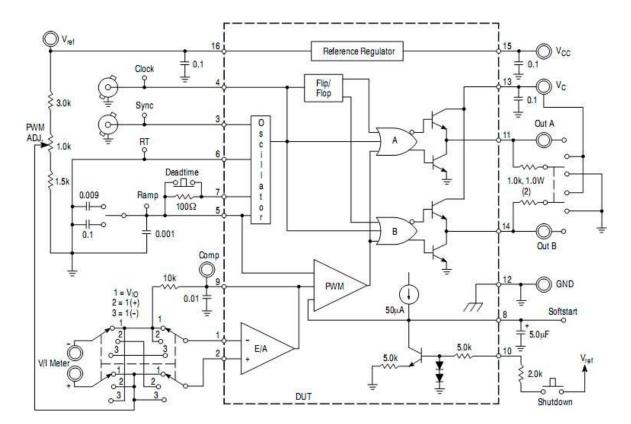
引脚图



内部框图

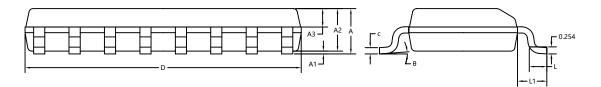
极限工作参数

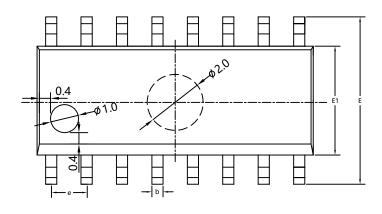
Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	40	V
Collector Supply Voltage	Vc	40	V
Output Current, Sink or Source	lo	500	mA
Reference Output Current	IREF	50	mA
Oscillator Charging Current	ICHG(OSC)	5	mA
Power Dissipation (TA = 25°C)	PD	1000	m/W
Operating Temperature	TOPR	0 ~ +70	°C
Storage Temperature	TSTG	-65 ~ +150	°C
Lead Temperature (Soldering, 10 sec)	TLEAD	+300	°C


参数(Vcc=20V)

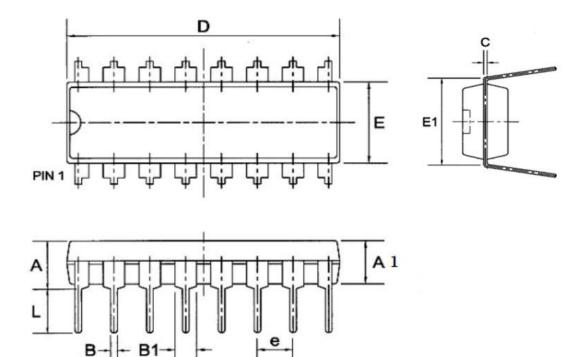
Parameter	Symbol	C	onditions	Min.	Typ.	Max.	Unit
REFERENCE SECTION							
Reference Output Voltage	VREF	TJ = 25°C		5.0	5.1	5.2	V
Line Regulation	AVREF	Vcc = 8 to 3	5V		9	20	mV
Load Regulation	ΔVREF	IREF = 0 to 2	0mA	-	20	50	mV
Short Circuit Output Current	ISC	VREF = 0, TJ	= 25°C		80	100	mA
Total Output Variation (Note 1)	ΔVREF	Line, Load an	nd Temperature	4.95	-	5.25	V
Temperature Stability (Note 1)	STT	2	-	5 2 11	20	50	mV
Long Term Stability (Note 1)	ST	TJ = 125°C ,1 KHRs		52X	20	50	mV
OSCILLATOR SECTION	2	×				8	£
Initial Accuracy (Note 1, 2)	ACCUR	TJ = 25°C		•	± 3	±6	%
Frequency Change With Voltage	Δf/ΔVCC	VCC = 8 to 35V (Note 1, 2)		•	±0.8	±2	%
Maximum Frequency	f(MAX)	R _T = 2KΩ, C _T = 470pF		400	430		KHz
Minimum Frequency	f(MIN)	RT = 200KΩ, CT = 0.1uF		170	60	120	Hz
Clock Amplitude (Note 1, 2)	V(CLK)	b≢ .		3	4		V
Clock Width (Note 1, 2)	tW(CLK)	TJ = 25°C		0.3	0.6	1	μs
Sync Threshold	VTH(SYNC)			1.2	2	2.8	V
Sync Input Current	II(SYNC)	Sync = 3.5V			1.3	3.5	mA
				•			
ERROR AMPLIFIER SECTION (VCM = 5.1V)			20 20	10 	88 	13 17
Input Offset Voltage		Vio -		•	1.5	10	m١
				20	10.00	- 10 State	12 172

ERROR AMPLIFIER SECTION (VCM -	5.19)					
Input Offset Voltage	Vio		•	1.5	10	mV
Input Bias Current	BIAS	(*)	3.00	1	10	μA
Input Offset Current	lio	-	•	0.1	1	μA
Open Loop Voltage Gain	Gvo	R _L ≥10MΩ	60	80	-	dB
Common Mode Rejection Ratio	CMRR	VCM = 1.5 to 5.2V	60	90		dB
Power Supply Rejection Ratio	PSRR	Vcc = 8 to 3.5V	50	60		dB
PWM COMPARATOR SECTION						
Minimum Duty Cycle	D(MIN)	(4)	1.44	-	0	%
Maximum Duty Cycle	D(MAX)	1911	45	49		%
Input Threshold Voltage (Note 2)	VTH1	Zero Duty Cycle	0.7	0.9		V
Input Threshold Voltage (Note 2)	VTH2	Max Duty Cycle	27	3.2	3.6	V
SOFT-START SECTION	10	8	3	4. 52	10 83	10
Soft Start Current	ISOFT	VSD = 0V, VSS = 0V	25	51	80	μA
Soft Start Low Level Voltage	VSL	VSD = 25V	1	0.3	0.7	V
Shutdown Threshold Voltage	VTH(SD)		0.6	0.8	1	V
Shutdown Input Current	IN(SD)	V _{SD} = 2.5V	125	0.3	1	mA
OUTPUT SECTION			12			
Low Output Voltage I	VOLI	ISINK = 20mA		0.1	0.4	V
Low Output Voltage II	Vol II	ISINK = 100mA	2	0.05	2	V
High Output Voltage I	VCH I	SOURCE = 20mA	18	19	-	V
High Output Voltage II	VCHII	ISOURCE = 100mA	17	18	-	V
Under Voltage Lockout	Vuv	Vs and V9 = High	6	7	8	V
Collector Leakage Current	LKG	Vcc = 35V	343	80	200	μA
Rise Time (Note 1)	tR	CL = 1uF, TJ = 25°C	873	80	600	ns
Fall Time (Note 1)	tF	CL = 1uF, TJ = 25°C	140	70	300	ns
STANDBY CURRENT						
Supply Current	Icc	Vcc = 35V	1.40	12	20	mA
	ar nasant a	Contraction of the second second				




测试线路

SOP-16(SOIC-16)封装信息



SYMBOL		MILLIMETER				
STNIBOL	MIN	NOM	МАХ			
A	1.50	1.60	1.70			
A1	0.10	0.15	0.25			
A2	1.40	1.45	1.50			
A3	0.60	0.65	0.70			
b	0.30	0.40	0.50			
с	0.15	0.20	0.25			
D	9.80	9.90	10.00			
E	5.80	6.00	6.20			
E1	3.85	3.90	3.95			
e	1.27BSC					
L	0.50	0.60 0.70				
L1	1.05BSC					
θ	0°	4° 8°				

DIP-16封装信息

	Dimensions in Millimeters			
Symbol	Min	Nom	Max	
А			4.31	
A1	3.15	3.30	3.65	
В		0.50		
B1		1.6		
С		0.27		
D	19.00	19.20	19.60	
Е	6.20	6.50	6.60	
E1		8.0		
e		2.3		
L	3.00	3.20	3.60	

Attention

Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.

• HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.

• Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could

give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.

■ In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

• No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production.
HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.